https://leetcode.com/problems/insert-interval/
Insert Interval
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
Code
# Definition for an interval. # class Interval(object): # def __init__(self, s=0, e=0): # self.start = s # self.end = e class Solution(object): def insert(self, intervals, newInterval): """ :type intervals: List[Interval] :type newInterval: Interval :rtype: List[Interval] """ if not intervals: return [newInterval] strt_idx = self.binary_search(intervals, newInterval.start) end_idx = self.binary_search(intervals, newInterval.end) if strt_idx ==0 and newInterval.end < intervals[0].start: # Condition 1 intervals[0:1] = [newInterval, intervals[0]] elif newInterval.start > intervals[strt_idx].end: # Condition 2 intervals[strt_idx:end_idx+1] = [intervals[strt_idx], Interval(newInterval.start, max(intervals[end_idx].end, newInterval.end))] else: # Condition 3 intervals[strt_idx:end_idx+1] = [Interval(min(intervals[strt_idx].start, newInterval.start), max(intervals[end_idx].end, newInterval.end))] return intervals def binary_search(self, intervals, t): left, right = 0, len(intervals)-1 while left <= right: mid = (left + right) / 2 if t > intervals[mid].start: left = mid + 1 elif t < intervals[mid].start: right = mid - 1 else: return mid # return index where t >= intervals[index].start return left-1 if left - 1 >=0 else 0
Idea
Do two rounds of binary search to determine the rightmost interval in `intervals` whose start $latex \leq$ `newInterval.start`. Also determine the rightmost interval whose start $latex \leq$ `newInterval.end`. Then you have three situations to deal with: