120. Triangle
- Total Accepted: 84503
- Total Submissions: 265352
- Difficulty: Medium
- Contributors: Admin
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Code
class Solution(object): def minimumTotal(self, triangle): """ :type triangle: List[List[int]] :rtype: int """ if len(triangle) == 0: return 0 if len(triangle) == 1: return triangle[0][0] last_level_sum = {0:triangle[0][0]} for i in xrange(1, len(triangle)): this_level_sum = {} for j in xrange(len(triangle[i])): if j == 0: this_level_sum[j] = last_level_sum[0] + triangle[i][j] elif j == len(triangle[i])-1: this_level_sum[j] = last_level_sum[j-1] + triangle[i][j] else: this_level_sum[j] = min(last_level_sum[j], last_level_sum[j-1]) + triangle[i][j] last_level_sum = this_level_sum return min(last_level_sum.values())
Idea
You go from top to bottom. Record the minimum sum until every layer. If you use a bottom-up DP, the solution can be more elegant.
Reference:
https://discuss.leetcode.com/topic/1669/dp-solution-for-triangle/2