1. Install Theano
http://deeplearning.net/software/theano/install.html
2. Use the following script to test Theano can work at least in CPU mode:
''' test whether theano is using cpu or gpu ''' from theano import function, config, shared, sandbox import theano.tensor as T import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 10000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], T.exp(x)) print f.maker.fgraph.toposort() t0 = time.time() for i in xrange(iters): r = f() t1 = time.time() print 'Looping %d times took' % iters, t1 - t0, 'seconds' print 'Result is', r if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]): print 'Used the cpu' else: print 'Used the gpu'
3. Install Cuda:
Follow instructions here: http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/#axzz3l18NxDB5
You need to first install Cuda ToolKit, then `sudo apt-get update` and then `sudo apt-get install cuda`.
Also need to follow the post-installation steps: http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html#post-installation-actions
4. Add the following .theanorc file in your home directory:
[global] floatX = float32 device = gpu0 # This enables GPU usage [nvcc] fastmath = True
http://deeplearning.net/software/theano/library/config.html
5. Retry the script in 2.